The COMPACS® system
Real-time vibration diagnostics
of machinery with probability close to 1
Русский Русский     EnglishEnglish 
Menu
Home
Products
Customers & responses
Personnel training
About company
News
Publications
Contacts
Awards
  • 2016 "Russia’s Honoured Engineer"
  • 2016 "Recognition"
  • 2016 "Import Substitution"
  • 2016 "Innovations and Quality"
  • 2015 "Outstanding manager"
  • 2015 "100 best goods of Russia"
  • 2015 "ESQR’s Quality Achievements Awards"
  • 2014 "Best Quality of Rolling Stock and Complex Technical Systems Contest conducted by Russian Railways"
  • 2014 "Highly-efficient  company"
  • 2014 "Reliable supplier"
  • 2014 "Leader of the Industry"
  • 2014 "Accountant of the Year"
  • 2014 "Technological breakthrough"
  • 2013 "Business elite of Russia"
  • 2013 "Top 100 of Russian Goods"
Tags Cloud
Follow us
Facebook Twitter LinkedIn YouTube Google+ RSS
Certification
In 2001 the quality management system of DYNAMICS SPC was put through facultative certification. In 2018 it was recertified for compliance with standards ISO 9001:2008. Its results confirmed a high level of goods and services quality management.
In 2001 the quality management system of DYNAMICS SPC was put through facultative certification. In 2018 it was recertified for compliance with standard GOST ISO 9001-2011. Its results confirmed a high level of goods and services quality management.
Orphus system
Home Publications Articles Real-Time Health Monitoring Systems of Machinery

Real-Time Health Monitoring Systems of Machinery

Print

Operating experience of machinery health monitoring systems for hazardous production facilities of energy complex, mining and metallurgical industry enterprises has been considered. The difference between condition monitoring and health monitoring systems has been shown.

Condition monitoring systems measure the physical processes parameters, though they do not determine the reasons for their change. Health monitoring systems determine not only the monitoring object’s technical state, but the reasons for its change, as well. These systems use the expert system algorithms for real-time decision-making support with an automatic diagnostics of machinery units’ failures. Simultaneously, the systems automatically detect the failures severity and point out actions the staff should take to solve the problem.

Sometimes in Russia such systems are called the diagnostic monitoring systems. Those, as a rule, are the 1st class-systems, according to GOST R 53564 [15]. The term “real time”, when it comes to condition monitoring, means that the determining the parameters measurement rate, as well as the object condition identification and the diagnostics results displaying, should be adjusted with its degradation rate and even several times outpacing, it in order to eliminate surges and increase the diagnosis accuracy, thus, creating the leeway for management decisions making and compensatory measures execution.

The technical and economic indexes of monitoring systems application effectiveness have been provided in the article.

References

  1. V. N. Kostyukov, S. N. Boichenko, Al. V. Kostyukov, ‘Automated control systems for safe resource-saving operation of equipment at refining and petrochemical plants (ACS SRSTM™ COMPACS®)’, Moscow, Mashinostroenie, ISBN: 5-217-02971-4, 1999, 163 p.
  2. V. N. Kostyukov, ‘Monitoring of Production Safety’, Moscow, Mashinostroenie, ISBN: 5-217-03151-4, 2002, 212 p.
  3. An. V. Kostyukov, V. N. Kostyukov, ‘Increase of operational efficiency of enterprises based on real-time monitoring’, Moscow, Mashinostroenie, 2009, 192 p.
  4. V. N. Kostyukov, ‘Condition monitoring of the equipment in real-time technology of safe-save maintenance of the XXI century’, Тhe 5th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies CM 2008/MFPT 2008/ 15-18 July, 2008, Edinburgh, Scotland, UK, BINDT & Coxmoor Publishing Co., ISBN: 978-1-901892-31-4, 2008, pp 785-793.
  5. V. N. Kostyukov, ‘Real-Time Condition Monitoring of Machinery’, The 6th International Conference on Condition Monitoring & Machinery Failure Prevention Technologies, CM 2009/MFPT2009/ 23-25 June, 2009, Dublin, Ireland, BINDT & Coxmoor Publishing Co., 2009, pp 1161-1170.
  6. S. N. Boichenko, V. N. Kostyukov, ‘Equipment diagnostic expert system’, The 6th International Conference on Condition Monitoring & Machinery Failure Prevention Technologies, CM 2009/MFPT2009/ 23-25 June, 2009, Dublin, Ireland, BINDT & Coxmoor Publishing Co., 2009, pp 1132-1135.
  7. An. V. Kostyukov, ‘Increase of safety and operating efficiency of continuous production cycle enterprises based on real-time comprehensive condition monitoring of equipment’, The 6th International Conference on Condition Monitoring & Machinery Failure Prevention Technologies, CM 2009/MFPT2009/ 23-25 June, 2009, Dublin, Ireland, BINDT & Coxmoor Publishing Co., 2009, pp 1164-1179.
  8. V. N. Kostyukov, ‘Real-time Condition Monitoring of Equipment’, The 7th International Conference on Condition Monitoring & Machinery Failure Prevention Technologies, CM 2010/MFPT2010/ 22-24 June, 2010, Stratford-upon-Avon, England, BINDT & Coxmoor Publishing Co., ISBN: 978-1-901892-33-8, 2010, Paper 236, 8 p.
  9. V. N. Kostyukov, ‘Real-time Condition Monitoring of machinery by the recurrent selection of the noise and periodic components of vibration’, The 8th International Conference on Condition Monitoring & Machinery Failure Prevention Technologies, CM 2011/MFPT2011/ 20-22 June, 2011, Cardiff, Wales, BINDT & Coxmoor Publishing Co., ISBN: 978-1-901892-36-9, 2011, Paper 205, 13 p.
  10. Al. V. Kostyukov, V. N. Kostyukov, ‘Classification of vibration parameters trends for RTCM’, The 8th International Conference on Condition Monitoring & Machinery Failure Prevention Technologies, CM2011/MFPT2011/ 20-22 June, 2011, Cardiff, Wales, BINDT & Coxmoor Publishing Co., ISBN: 978-1-901892-36-9, 2011, Paper 217, 10 p.
  11. A. P. Naumenko, ‘Modern methods and means of on-line monitoring of parameters and real-time health monitoring of piston machines’, The 8th International Conference on Condition Monitoring & Machinery Failure Prevention Technologies, CM2011/MFPT2011/ 20-22 June, 2011, Cardiff, Wales, BINDT & Coxmoor Publishing Co., ISBN: 978-1-901892-36-9, 2011, Paper 209, 13 p.
  12. V. N. Kostyukov, ‘Real-Time Condition Monitoring of gear pumps by the recurrent selection of the noise and periodic components of vibration’, The 9th International Conference on Condition Monitoring & Machinery Failure Prevention Technologies, CM 2012/MFPT2012/ 12-14 June, 2012, London, England, BINDT & Coxmoor Publishing Co., ISBN: 978-1-901892-36-9, 2012, Paper 259, 11 p.
  13. V. N. Kostyukov, A. P. Naumenko, An. V. Kostyukov, S. N. Boichenko, Al. V. Kostyukov, ‘Standards in the field of technical condition of hazardous facilities equipment’, Industrial safety, Moscow, 2012, 7, pp 30-36.
  14. GOST R 53563-2009. ‘Condition monitoring and diagnostics of machines. Hazardous equipment monitoring. Organizational procedures‘, Moscow, STANDARTINFORM, 2010.
  15. GOST R 53564-2009. ‘Condition monitoring and diagnostics of machines. Hazardous equipment monitoring. Requirements for monitoring systems’, Moscow, STANDARTINFORM, 2010.
  16. GOST R 53565-2009. ‘Condition monitoring and diagnostics of machines. Hazardous equipment monitoring. Vibration generated by rotodynamic pump and compressor units’, Moscow, STANDARTINFORM, 2010.
  17. E. A. Malov, I. B. Bronfin, V. N. Dolgopyatov, V. N. Kostyukov, S. N. Boichenko, ‘Implementation of the COMPACS® systems – providing of safe operation at the plants with continuous production cycle’, Industrial safety, Moscow, 1994, 8, pp 19-22.
  18. V. N. Kostyukov, S. N. Boichenko, A. P. Naumenko, E. V. Tarasov, ‘Comprehensive monitoring of hazardous production facilities’, Control. Diagnostics, Moscow, 2008, 12, pp 8-18.

 

Kostyukov V.N. Real-Time Health Monitoring Systems of Machinery // X International Conference Condition Monitoring and Machinery Failure Prevention Technologies - СМ/MFPT 2013

Download the publication

You can order the translation by e-mail: a@dynamics.ru


Tags: condition monitoring diagnostics expert system standard accidents prevention health monitoring Date: 04.03.2016
Views: 1105
« Prev. Next. »