THE COMPACS SYSTEM®
REAL-TIME VIBRATION DIAGNOSTICS
OF MACHINERY WITH PROBABILITY CLOSE TO 1
Русский Русский     EnglishEnglish 
Menu
Home
Products
Customers & responses
Personnel training
About company
News
Publications
Contacts
Awards
  • 2018 "For Achievements in Quality"
  • 2018  «100 Best Products of Russia»
  • 2017 Diploma "Power of the XXI Century"
  • 2016 "Russia’s Honoured Engineer"
  • 2016 "Recognition"
  • 2016 "Import Substitution"
  • 2016 "Innovations and Quality"
  • 2015 "Outstanding manager"
  • 2015 "100 best goods of Russia"
  • 2015 "ESQR’s Quality Achievements Awards"
  • 2014 "Best Quality of Rolling Stock and Complex Technical Systems Contest conducted by Russian Railways"
  • 2014 "Highly-efficient  company"
  • 2014 "Reliable supplier"
  • 2014 "Leader of the Industry"
  • 2014 "Accountant of the Year"
Tags Cloud
Follow us
Facebook Twitter LinkedIn YouTube Google+ RSS
Certification
In 2001 the quality management system of DYNAMICS SPC was put through facultative certification. In 2018 it was recertified for compliance with standards ISO 9001:2015. Its results confirmed a high level of goods and services quality management.
Orphus system
Home Publications Articles Calculation and Interpolation of the Characteristics of the Hydrodynamic Journal Bearings in the Domain of Possible Movements of the Rotor Journals

Calculation and Interpolation of the Characteristics of the Hydrodynamic Journal Bearings in the Domain of Possible Movements of the Rotor Journals

Print
To visualize the physical processes that occur in the journal bearings of the shafting of power generating turbosets, a technique for preliminary calculation of a set of characteristics of the journal bearings in the domain of possible movements (DPM) of the rotor journals is proposed. The technique is based on interpolation of the oil film characteristics and is designed for use in real-time diagnostic system COMPACS®.
According to this technique, for each journal bearing, the domain of possible movement of the shaft journal is computed, then triangulation of the area is performed, and the corresponding mesh is constructed. At each node of the mesh, all characteristics of the journal bearing required by the diagnostic system are calculated.
Via shaft-position sensors, the system measures—in the online mode—the instantaneous location of the shaft journal in the bearing and determines the averaged static position of the journals (the pivoting vector). Afterwards, continuous interpolation in the triangulation domain is performed, which allows the real-time calculation of the static and dynamic forces that act on the rotor journal, the flow rate and the temperature of the lubricant, and power friction losses. Use of the proposed method on a running turboset enables diagnosing the technical condition of the shafting support system and promptly identifying the defects that determine the vibrational state and the overall reliability of the turboset. The authors report a number of examples of constructing the DPM and computing the basic static characteristics for elliptical journal bearings typical of large-scale power turbosets. To illustrate the interpolation method, the traditional approach to calculation of bearing properties is applied. This approach is based on a Reynolds two-dimensional isothermal equation that accounts for the mobility of the boundary of the oil film continuity.

 

Kumenko A.I., Kuzminyh N.Y.,Timin A.V. Calculation and Interpolation of the Characteristics of the Hydrodynamic Journal Bearings in the Domain of Possible Movements of the Rotor Journals // Thermal Engineering, 2016, Vol.63, No. 10, pp. 699-706

Download the publication

You can order the translation by e-mail: a@dynamics.ru


Tags: journal bearing power-generating turboset Reynolds equation triangulation interpolation technical diagnostics real-time mode Date: 10.09.2019
Views: 129
« Prev. Next. »